Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Urbanization has amplified the importance of three‐dimensional structures in urban environments for a wide range of phenomena that are of significant interest to diverse stakeholders. With the growing availability of 3D urban data, numerous studies have focused on developing visual analysis techniques tailored to the unique characteristics of urban environments. However, incorporating the third dimension into visual analytics introduces additional challenges in designing effective visual tools to tackle urban data's diverse complexities. In this paper, we present a survey on visual analytics of 3D urban data. Our work characterizes published works along three main dimensions, why, what, and how, considering use cases, analysis tasks, data, visualizations, and interactions. We provide a fine‐grained categorization of published works from visualization journals and conferences, as well as from a myriad of urban domains, including urban planning, architecture, and engineering. By incorporating perspectives from both urban and visualization experts, we identify literature gaps, motivate visualization researchers to understand challenges and opportunities, and indicate future research directions.more » « less
-
While cities around the world are increasingly promoting streets and public spaces that prioritize pedestrians over vehicles, significant data gaps have made pedestrian mapping, analysis, and modeling challenging to carry out. Most cities, even in industrialized economies, still lack information about the location and connectivity of their sidewalks, making it difficult to implement research on pedestrian infrastructure and holding the technology industry back from developing accurate, location-based Apps for pedestrians, wheelchair users, street vendors, and other sidewalk users. To address this gap, we have designed and implemented an end-to-end open-source tool— Tile2Net —for extracting sidewalk, crosswalk, and footpath polygons from orthorectified aerial imagery using semantic segmentation. The segmentation model, trained on aerial imagery from Cambridge, MA, Washington DC, and New York City, offers the first open-source scene classification model for pedestrian infrastructure from sub-meter resolution aerial tiles, which can be used to generate planimetric sidewalk data in North American cities. Tile2Net also generates pedestrian networks from the resulting polygons, which can be used to prepare datasets for pedestrian routing applications. The work offers a low-cost and scalable data collection methodology for systematically generating sidewalk network datasets, where orthorectified aerial imagery is available, contributing to over-due efforts to equalize data opportunities for pedestrians, particularly in cities that lack the resources necessary to collect such data using more conventional methods.more » « less
-
Video summarization aims to simplify large-scale video browsing by generating con- cise, short summaries that diver from but well represent the original video. Due to the scarcity of video annotations, recent progress for video summarization concentrates on unsupervised methods, among which the GAN-based methods are most prevalent. This type of methods includes a summarizer and a discriminator. The summarized video from the summarizer will be assumed as the final output, only if the video reconstructed from this summary cannot be discriminated from the original one by the discriminator. The primary problems of this GAN-based methods are two-folds. First, the summarized video in this way is a subset of original video with low redundancy and contains high priority events/entities. This summarization criterion is not enough. Second, the training of the GAN framework is not stable. This paper proposes a novel Entity–relationship Aware video summarization method (ERA) to address the above problems. To be more spe- cific, we introduce an Adversarial Spatio-Temporal network to construct the relationship among entities, which we think should also be given high priority in the summarization. The GAN training problem is solved by introducing the Wasserstein GAN and two newly proposed video-patch/score-sum losses. In addition, the score-sum loss can also relieve the model sensitivity to the varying video lengths, which is an inherent problem for most current video analysis tasks. Our method substantially lifts the performance on the target benchmark datasets and exceeds the current state-of-the-art. We hope our straightfor- ward yet effective approach will shed some light on the future research of unsupervised video summarization. The code is available online.more » « less
-
The sport data tracking systems available today are based on specialized hardware (high-definition cameras, speed radars, RFID) to detect and track targets on the field. While effective, implementing and maintaining these systems pose a number of challenges, including high cost and need for close human monitoring. On the other hand, the sports analytics community has been exploring human computation and crowdsourcing in order to produce tracking data that is trustworthy, cheaper and more accessible. However, state-of-the-art methods require a large number of users to perform the annotation, or put too much burden into a single user. We propose HistoryTracker, a methodology that facilitates the creation of tracking data for baseball games by warm-starting the annotation process using a vast collection of historical data. We show that HistoryTracker helps users to produce tracking data in a fast and reliable way.more » « less
-
Geographical maps encoded with rainbow color scales are widely used for spatial data analysis in climate science, despite evidence from the visualization literature that they are not perceptually optimal. We present a controlled user study that compares the effect of color scales on performance accuracy for climate-modeling tasks using pairs of continuous geographical maps generated using climatological metrics. For each pair of maps, 39 scientist-observers judged: i) the magnitude of their difference, ii) their degree of spatial similarity, and iii) the region of greatest dissimilarity between them. Besides the rainbow color scale, two other continuous color scales were chosen such that all three of them covaried two dimensions (luminance monotonicity and hue banding), hypothesized to have an impact on visual performance. We also analyzed subjective performance measures, such as user confidence, perceived accuracy, preference, and familiarity in using the different color scales. We found that monotonic luminance scales produced significantly more accurate judgments of magnitude difference but were not superior in spatial comparison tasks, and that hue banding had differential effects based on the task and conditions. Scientists expressed the highest preference and perceived confidence and accuracy with the rainbow, despite its poor performance on the magnitude comparison tasks.more » « less
An official website of the United States government

Full Text Available